Free Wheel Valve for Hi-Speed Mobile Application

Keith Mears

April 17, 2008

Radial Piston Motor
Source: http://home.wxs.nl/~brink494/radpmw_e.htm

Problem Statement:

- •A radial piston hydraulic motor is powered at low rpm and disengaged at high rpm.
- •A Free Wheel Valve is needed to direct hydraulic fluid to hold the motor pistons in a retracted position when the motor is not powered.

Design Objectives:

- 1. Design freewheel valve that can be made by TUTHILL Drive Systems at Brookston manufacturing facility.
- 2. Reduce the cost of the Free Wheel Valve.
- 3. Simplify the Free Wheel Valve design.

Free Wheel Valve Hydraulic Schematic

Free Wheel Valve

Design Tasks:

- •Determine current system specifications.
- Develop hydraulic schematic.
- Select electronically controlled solenoid valves to shift valve.
- Create a 3D computer model of possible valve design.
- Create an engineering drawing to manufacture valve manifold.
- Test and validate proposed design.
- Complete a bill of materials.
- •Prove cost reduction of valve design.

Design Specifications:

Pump	Flow Rate (gpm)	Max. Pressure (psi)		
Auxilary	13	3000		
System Charge	17	3000		
System	80	6000		

3D Computer Model:

Making the Manifold:

- •3D Model was used to create a detailed engineering drawing.
- Three finishing tools were purchased to machine valve ports.

Detail View of Engineering Drawing

Finishing Tools Used to Machine Ports

Machining a Manifold

Test & Validation:

- •Test procedure was created based on application requirements.
- •Schematic theory discussed and approved for all four modes of operation.
- •Manifold tests were conducted using color models.

Excerpt from Test Procedure

Model Legend:

- •Blue free wheel pressure set by check valve
- ■Red return pressure
- Yellow working valves

Color Model of Manifold During Free Wheel Condition

Bill of Materials:

Supplier	Description	Qty.	Unit Price	Total Price
Hydra Air (Parker)	Cartridge Relief Valve	1	39.79	39.79
Hydra Air (Parker)	2-Position, 3-Way Cartridge Valve	1	66.18	66.18
EATON Vickers	2-Position, 2-Way Cartridge Valve	3	85.94	257.82
EATON Vickers	Check Valve	1	20.16	20.16
Aeroquip	SAE 12 ORB Socket Head Plug	1	1.55	1.55
Aeroquip	SAE 06 ORB Socket Head Plug	4	0.40	1.60
Central Steel and Wire	1018 4.5 x 4.5 x 6.25 Steel Bar	1	5.67	35.44
			Total=	422.54

Cost and Size Comparison:

Size Comparison vs. Current Valve Option

Now you can take the high road, low road, and ever ything in-between. Increase your vehicle's driveability range and safety on-highway ar off-road. Reduces you we high way ar off-road at hill.

Example Valve Application: EZ Trac Hydraulic Axle

Acknowledgments:

- Dr. Joseph Irudayaraj ABE 485 Professor, Purdue University josephi@purdue.edu
- •Brad Meyerholtz Engineering Manager, Tuthill Drive Systems bmeyerholtz@tuthill.com
- James Smith Senior Project Engineer, Tuthill Drive Systems jsmith@tuthill.com

